nl en



Admission requirements

Basic knowledge of atomic physics and quantum mechanics is required. When necessary, concepts of thermal and statistical physics will be discussed during the course.


All the light we see when we look up at the night sky comes either directly or indirectly from starlight. Understanding the physics of stars is therefore the basis of many aspects of astronomy: it is key to unravel the light of nearby and extremely distant galaxies. It also is an important factor in determining whether exo-planets can host life as we know it.

Course objectives

The main goal of this lecture series is to review the physical processes that determine the basic properties of stars. Topics that will be addressed include: nuclear energy production, energy and radiation transport, and the stellar structure equations. These will then be used to present models of the basic observable properties of stars such as mass, luminosity and surface temperature. These models also give a good understanding of the distribution of stars in the Hertzsprung-Russel diagram where for a collection of stars absolute magnitudes are plotted versus their observed colours. Also, we will review what happens when stars come at the end of their energy production. For massive stars we will study how supernova explosions lead to the formation of neutron stars and even black holes, while for less massive stars we will see that the final end products are white dwarfs. Finally, we will sketch some of the physical processes that lead to the formation of stars.

In this course, students will be trained in the following behaviour-oriented skills:

  • Problem solving (recognizing and analyzing problems, solution-oriented thinking)

  • Analytical skills (analytical thinking, abstraction, evidence)

  • Structured thinking (structure, modulated thinking, computational thinking, programming)

  • Written communication (writing skills, reporting, summarizing)

  • Critical thinking (asking questions, check assumptions)


See Schedules bachelor Astronomy

You will find the timetables for all courses and degree programmes of Leiden University in the tool MyTimetable (login). Any teaching activities that you have sucessfully registered for in MyStudyMap will automatically be displayed in MyTimeTable. Any timetables that you add manually, will be saved and automatically displayed the next time you sign in.

MyTimetable allows you to integrate your timetable with your calendar apps such as Outlook, Google Calendar, Apple Calendar and other calendar apps on your smartphone. Any timetable changes will be automatically synced with your calendar. If you wish, you can also receive an email notification of the change. You can turn notifications on in ‘Settings’ (after login).

For more information, watch the video or go the the 'help-page' in MyTimetable. Please note: Joint Degree students Leiden/Delft have to merge their two different

Mode of instruction

Lectures and seminars

Assessment method

  • Computer problems and class assignments: 30%. Only if the average grade is higher than 5.0, students are allowed to take the written exam.

  • Written exam: 70%. See Examination schedules bachelor Astronomy

Reading list

  • LeBlanc, F. (2010): An Introduction to Stellar Astrophysics, ISBN: 978-0-470-69956-0 (required)


From the academic year 2022-2023 on every student has to register for courses with the new enrollment tool MyStudyMap. There are two registration periods per year: registration for the fall semester opens in July and registration for the spring semester opens in December. Please see this page for more information.

Please note that it is compulsory to both preregister and confirm your participation for every exam and retake. Not being registered for a course means that you are not allowed to participate in the final exam of the course. Confirming your exam participation is possible until ten days before the exam.
Extensive FAQ's on MyStudymap can be found here.


Lecturer: Prof.dr. M.T. Kriek
Assistants: Nikki Geesink, Cristina Cordun, Sam Beckers, Timo Marchand, Viktória Kecskeméthy