nl en

Photosynthesis and Bioenergy (PBE)


Admission requirements

Core course in MSc Chemistry (Energy & Sustainability), elective course MSc Life Science and Technology.
While this course is a core module for Chemistry (Energy & Sustainability), Life Science and Technology students with interest in green biology are encouraged to join. Suitable for students with a BSc MST with a major in Chemistry/materials, BSc LST or equivalent. All other candidates should have a basic knowledge of photochemistry and spectroscopy.


In photosynthesis, the Sun’s energy is captured and stored by a series of events that convert the pure energy of light into the biochemical energy needed to power life. This course describes the molecular processes in photosynthesis from light capture to carbon fixation, with a special focus on the early events. The first part will focus on the biophysical concepts and design principles of natural photosynthesis, with relevance for artificial photosynthesis. The second part will focus on regulation in oxygenic photosynthesis. In addition, the course will contain 1-2 sessions concentrated on scientific reading papers covering a specific theme. During these sessions, students will give an oral presentation of an assigned reading paper, followed by group discussion.

Course material contains chapters from the book “Molecular Mechanisms in Photosynthesis” (R.E. Blankenship, Wiley 2nd edition 2014) and distributed lecture slides. Students are expected to have a basic background knowledge in photochemistry and spectroscopy. The appendix of the course book also provides an elementary overview of common spectroscopy and techniques used in photosynthesis.

Course objectives

After this course, students will be able to

  • read and discuss scientific literature on selected photochemical/photophysical topics in photosynthesis

  • explain molecular mechanisms underlying photophysical/photochemical processes in photosynthesis

  • apply theory of excitation and electron transfer to calculate energy transfer, quantum yields, solar energy conversion efficiencies and losses in photosynthetic networks

  • explain current molecular models for photoprotection.

  • discuss current initiatives for improvement of biomass and biofuel production


Schedule information can be found on the website of the programmes.

You will find the timetables for all courses and degree programmes of Leiden University in the tool MyTimetable (login). Any teaching activities that you have sucessfully registered for in MyStudyMap will automatically be displayed in MyTimeTable. Any timetables that you add manually, will be saved and automatically displayed the next time you sign in.

MyTimetable allows you to integrate your timetable with your calendar apps such as Outlook, Google Calendar, Apple Calendar and other calendar apps on your smartphone. Any timetable changes will be automatically synced with your calendar. If you wish, you can also receive an email notification of the change. You can turn notifications on in ‘Settings’ (after login).

For more information, watch the video or go the the 'help-page' in MyTimetable. Please note: Joint Degree students Leiden/Delft have to merge their two different timetables into one. This video explains how to do this.

Mode of instruction

Lectures, exercises and literature presentations

Assessment method

Written exam (80%) and oral presentation/discussion (20%).

Reading list

Molecular Mechanisms of Photosynthesis, 2nd Edition
Robert E. Blankenship
ISBN: 978-1-4051-8976-7
April 2014, Wiley-Blackwell
The book is available as e-book.

Slides presented during the courses.


From the academic year 2022-2023 on every student has to register for courses with the new enrollment tool MyStudyMap. There are two registration periods per year: registration for the fall semester opens in July and registration for the spring semester opens in December. Please see this page for more information.

Please note that it is compulsory to both preregister and confirm your participation for every exam and retake. Not being registered for a course means that you are not allowed to participate in the final exam of the course. Confirming your exam participation is possible until ten days before the exam.

Extensive FAQ's on MyStudymap can be found here.


Dr. Anjali Pandit


Assignment deadlines are communicated via Brightspace.

According to OER article 4.8, students are entitled to view their marked examination for a period of 30 days following the publication of the results of a written examination. Students should contact the lecturer to make an appointment for such an inspection session.