Studiegids

nl en

Mathematical Biology: from individual cell behaviour to biological growth and form (BM)

Vak
2012-2013

How does the genetic information encoded in the DNA produce the three-dimensional shape and function of multicellular organisms: animals and plants? A key question here is how cells cooperate to create biological structure, and how this biological structure feeds back on gene expression. This course will introduce students to the mathematical and computational biology of multicellular phenomena, covering a range of biological examples, including development of animals and plants, blood vessel growth, bacterial pattern formation and diversification, tumor growth and evolution.

At the end of course students will have an overview of and some hands-on experience with a range of mathematical and computational techniques (PDEs, cellular automata, Cellular Potts model, vertex-based models, etc.) that computational biologist use in the study of collective cell behavior and biological pattern formation. They are familiar with recent literature on multiscale biological modeling and they have some experience with constructing basic computational models and hypotheses of phenomena described in the biological literature.

The course consists of a series of lectures, practical assignments using biological modeling environments. The course is concluded with a report on the practical work.

Hours/week
2 or 4 (course and computer practicum)

Links
Website biomodeling CWI