Vanwege de coronamaatregelen kan de onderwijsvorm of tentaminering afwijken. Zie voor actuele informatie de betreffende cursuspagina’s op Brightspace.

Studiegids

nl en

Fundamentals of Modelling and Data Analysis

Vak
2017-2018

Admission requirements

This course is obligatory for students of the master’s programme Industrial Ecology.

Description

Industrial Ecology relies on mathematical models and involves the processing of potentially large datasets.

Modelling is the art of developing a simplified description of a problem that is complex enough to capture its relevant features and yet simple enough to be manageable and yield measurable predictions. Data analysis is the art of collecting information and processing it to return meaningful visualizations and model results.

The language of modelling is mathematics and the tool of data analysis is programming. Both go hand in hand and are essential skills that will help you in your life as an industrial ecologist.

Throughout the course we will cover various types of models and tools and illustrate their application to problems such as: Will the world run out of oil? How many people can the earth support? Have some countries faked their GHG inventory reports?

A computer language is not only an interface to control the computer, it is also an unambiguous description of the data structures and algorithms applied in research. In this course, you will learn to use the programming language Python for scientific work, especially for analysing and visualising datasets that are relevant for Industrial Ecology. You will need a laptop and Python, which is available for all operating systems. The IDE Spyder is advised, but any alternative will do.

Course objectives

By the end of the course you should be able to:

  • Understand basic concepts of modelling and good scientific practices;

  • Use a programming language to access, convert, query and visualize datasets;

  • Use the above skills to formulate and solve industrial ecology problems, synthesize results in a meaningful conclusion and evaluate data and model quality.

Timetable

See Brightspace TU Delft.

Mode of instruction

The course counts for 6 EC, which corresponds to 168 hours of work, corresponding to 12 hours of work per week over 14 weeks. Not counting the time for classes and workshops it means you should expect to spend an additional six hours per week preparing assignments or studying.

Each class will typically start with a review of the previous week’s material and/or assignment, followed by the presentation of the current week’s problem. The bulk of the class will then proceed with the presentation of the new mathematical and programming material, illustrated with a toy model. The class will conclude with the week’s new assignment.

During the exercises lecturers and student assistants will move around the room taking questions.

Assessment method

60% of the grade will result from an exam in the last lecture, covering the content of the whole course. To pass the course it is necessary to have a minimum grade of 6/10 in the exam.

40% of the grade will come from assignments. Each assignment will require the use of a computer and will consist in the design of an algorithm, analysing a dataset and applying or calibrating a model. To pass the course it is necessary to have a minimum grade of 6/10 in each assignment.

The students have the opportunity to do a retake of the final exam but not of the assignments.

Brightspace

The lecturers communicates via Brightspace TU Delft.

Reading list

The course will use Python3 and the IDE Spyder.

The lecture slides will be provided via Brightspace. For the programming part, the course will follow 'Python for Everybody - Exploring Data Using Python 3' by Charles Severance (2016).

Registration

Because this course is part of a programme of Leiden University and TU Delft, all students have to be enrolled to both universities.

All students have to enroll for course and exam at the start of the course via uSis, Leiden University (see: https://www.student.universiteitleiden.nl/en/administrative-matters/registration--de-registration/course-and-exam-enrolment/course-and-exam-enrolment/science/industrial-ecology-msc?cf=science&cd=industrial-ecology-msc#tab-2).

Students who are not enrolled to the master’s programme Industrial Ecology have to ask permission from the study advisor of Industrial Ecology (studyadvisor-ie@cml.leidenuniv.nl)at least one month before start of the course by use of this form: http://media.leidenuniv.nl/legacy/registration-minor-or-guest-student.pdf

Exchange students can only enroll for this course if their home university has an Exchange agreement with both Leiden University and TU Delft. Exchange students have to ask permission from the studyadvisor of Industrial Ecology as soon as possible, preferably six months before the start of the course.

Contact information

Dr. Laura Scherer (l.a.scherer@cml.leidenuniv.nl)

Remarks

More information and the description of the course will be published in the e-studyguide of TU Delft.