Admission requirements
Students should be familiar with the structure and function of DNA, RNA and proteins including basic knowledge about their biosynthesis (DNA replication, RNA transcription and protein translation). To obtain the required level students should have studied the relevant parts of a major textbook in molecular biology like for instance “Molecular Biology of the Cell” by Alberts et al. (6th edition; Chapter 4; DNA, Chromosomes, and Genomes; Chapter 5; DNA Replication, Repair and Recombination; Chapter 6; How Cells Read the Genome; from DNA to Protein).
Students should have a general theoretical knowledge about manipulating cells and DNA. To obtain the required level students should have studied the relevant parts of a major textbook. The following sections from chapter 8 of “Molecular Biology of the Cell” can serve as an example of the required study material: “Isolating cells and Growing them in Culture” and “Analyzing and Manipulating DNA”.
Students should be familiar with the general concepts of virology as they are taught in the LUMC course “Infectious Agents and Immunity” and summarized in Chapter 14 section 1 and 6 of “Biochemistry” by Campbell and Farrell.
Students should be familiar with the use of basic laboratory equipment like (micro)pipettes, electrophoresis equipment, (micro)centrifuges, biosafety cabinets, etc.
Some experiments in the course involve the handling of (small amounts of) radioactivity. Students should therefore preferably have obtained a certificate demonstrating that they have general knowledge about radioisotopes and their use in a laboratory setting (RA safety course level B5 or higher).
Recommended knowledge:
- The practical part of the course involves handling of infectious material (viruses) and genetically modified organisms (GMOs). Therefore general knowledge and skills in how to handle infectious material and GMOs is recommended. The required knowledge and skills can be obtained in the LUMC course “Infectious Agents and Immunity” or an equivalent course in (medical) microbiology.
Description
Period: 22 October 2018 - 17 November 2018
RNA viruses constitute a major group of pathogens and can infect all living organisms, including humans. They are unique, not only for having an RNA genome, but also because of their high mutation frequency, evolutionary potential, diverse replication mechanisms and intricate strategies to exploit the infrastructure of the infected host cell. This Master course focuses on the molecular biology and the different strategies that RNA viruses use for their genome replication, gene expression and virion production. A significant part of the course consists of practical work. In this part of the course students will become familiar with various virological and molecular techniques to detect, quantify and purify viruses and learn methods to study viral genes and gene products. During the practical work, students will work in couples and the materials generated in one experiment will be required for the next experiment.
Although the emphasis is on viruses with an RNA genome, many general virological principles will be discussed. A textbook and workgroups (including assignments) will guide the students through the theoretical part of the course. In addition, a reader containing protocols and selected additional information will be provided. A number of seminars by guest speakers are scheduled throughout the course to illustrate some of the major topics in current virology. At the end of the course, the students will have to present the outcome of the experiments and take a written exam covering the textbook, the experiments and seminar contents.
This course will particularly work on:
Research competences:
Integrating different biomedical disciplines; practical skills; recording, organizing and analyzing data.
Professional competences:
Commitment; motivation and drive; collaborating with peers; respecting the rules of the group.
Course objectives
The student:
Is able to describe the molecular aspects of the RNA virus replication cycle (virus entry, gene expression, replication, particle assembly and release).
Is able to describe the techniques that are used to detect, purify and quantitate virus particles and to study viral proteins and/or nucleic acids and/or gene expression.
Describes the characteristics and potential use of different RNA virus-based expression vectors.
Is able to deduce a model (on aspects) of an RNA virus replication cycle or virus particle structure, based on experimental results.
Is able to design and execute experiments (including controls) that yield information on various aspects of the replication cycle and structure of RNA viruses.
Critically discusses the data obtained from his own experiments as well as those performed by other for a professionally educated audience.
Presents and defends the data obtained from his own experiments for a professionally educated audience.
Demonstrates a professional attitude in the laboratory and workgroups by being on time, showing motivation, participating and cooperating with peers constructively and sticking to the applicable rules.
Timetable
All course and group schedules are published on our LUMC scheduling website or on the LUMC scheduling app.
Mode of instruction
Self- study assignments, work groups, practicals, demonstration experiments, seminars, presentations by students, written exam.
Course load
Total course load is the amount of EC’s multiplied with 28 hours.
Assessment method
Summative assessment:
A. Study performance
B. Presentation on experimental work
C. Written exam
The exam dates can be found on the schedule website.
Blackboard
Blackboard will be used during this course.
Reading list
Will be distributed during the course.
Registration
Registration for FOS courses, H2W, Scientific Conduct, How to start, Course on Animal Science , and CRiP and Adv concepts courses takes place in lottery rounds in the beginning of July. After the lottery rounds: if you want to register for a course you are kindly asked to contact the student administration at masterbw-courses@lumc.nl.