Studiegids

nl en

Learning and ongoing evaluation of learning

Vak
2019-2020

NB Language of instruction is English

Description

In this course, students will (1) learn to implement data-based problem-solving / data-based instruction, and (2) critically evaluate the research surrounding data-based instruction. Data-based problem-solving (also known as data-based instruction) refers to the use of data to build effective educational programs for students with learning and behavioral difficulties. The course begins with a description of a problem-solving approach to learning and behavior. A system-wide problem-solving model is described: Response to Intervention (RTI)/ Multi-tiered Systems of Support (MTSS). The emphasis then turns to data-based problem-solving at the individual level, and the use of Curriculum-Based Measurement (CBM). CBM (in Dutch, Continue Voortgangsmonitoring, CVM) is a progress-monitoring system specifically designed for implementation of data-based problem-solving for individuals with learning difficulties. Students will learn the skills and techniques needed to implement CBM within a problem-solving approach for an individual. Students also will critically evaluate the research on problem-solving approaches and CBM.

Course objectives

Students will:

  1. Describe what a problem-solving approach is, the factors leading to a problem-solving approach, and the steps to problem solving.
  2. Describe a specific problem-solving model, Response to Intervention/Multi-tiered Systems of Support, and describe the potential advantages and disadvantages of such tiered systems of instruction.
  3. Describe Curriculum-based Measurement (CBM), a system for closely monitoring the progress of, and evaluating the effects of, instructional programs for individuals with learning difficulties.
  4. Critically evaluate and discuss the research on data-based problem-solving / data-based instruction and CBM progress monitoring.
  5. Implement data-based problem-solving with one student.
  6. Prepare a report of the data-based problem-solving project and present it in class.

Mode of instruction

Lectures, presentations, and discussion.

Assessment method

Evaluation of discussion questions and answers, presentations, and of progress-monitoring project.

Timetable

Lectures

Reading list

Study material will consist of recent book chapters as well as primary research articles from leading journals in education, psychology, and cognitive science.

Recommended (and required for students in KLGO Master’s specialisation): Hosp, M.K., Hosp, J.L., & Howell, K.W. (2007). The ABCs of CBM: A practical guide to Curriculum-Based Measurement. New York: Guilford.

Blackboard

Blackboard will be used during the course.

Registration

Course

Students need to register for lectures in uSis. It is not possible to take a course without a valid registration.

Exam

Students are not automatically registered for exams. They can register themselves in uSis until 10 calendar days before the exam date at the latest. Students who are not registered will not be permitted to take the exam.

Please consult the course and exam registration website for information on registration periods and further instructions.

The exam of this course is a paper. This means that you do not have to register yourself for this exam in uSis.

Contact information

During this course Professor Espin holds offices one hour immediately after classes. She can also be reached by email.