Due to the Corona virus education methods or examination can deviate. For the latest news please check the course page in Brightspace.

Prospectus

nl en

The Electronic Structure of Solids

Course
2021-2022

Admission Requirements

Introduction to Solid State Physics

Description

This course aims at describing the behavior of electrons in solids. To this end, the electronic (band) stucture of solids is introduced, and calculated in simple models. The course can be seen as a first step towards electronic structure calculations of real solids, quantum many body physics, and emergent quasiparticles.

In this course you learn how electrons in solids can be described by simple but highly successful models. After a brief introduction about quantized lattice vibrations (phonons) and their energy spectra (band structures), we will start to work with and solve model Hamiltonians to describe electrons in the periodic potential in solids. You will be introduced to the concept of quasiparticles. You will learn to qualitatively and quantitatively descripe important properties of electrons in periodic potentials, and get quantities such as the energy spectra. Later, we will apply these techniques to describe semiconductors, magnets, and superconductors.

The class is recommended especially if you want to pursue experimental or theoretical condensed matter physics.

Course objectives

The main objective is to be able to describe electrons in solids using (model) Hamiltonians and solve the corresponding quantummechanical eigenvalue problems.

After this class, you will be able to:

  • Derive the spectrum of quantized lattice vibrations for simple crystalline solids with regards to macroscopic properties

  • Derive the spectrum of electrons in simple crystalline solids and interpret the result with regards to macroscopic properties

  • Explain the concept of a Brillouin zone, and be able to explain why it is valuable to describe solids.

  • Draw band structures for one dimensional solids

  • Derive the band structure in simple one-dimensional chains both in the nearly free electron and tight binding model; explain the difference between these two models.

  • Name the key phenomenological properties of semiconductors and connect them to microscopic models

  • Name models to describe the key properties of magnets, and explain where they are useful

  • Describe the basic phenomenology of superconductors

Soft skills

You use books in addition to the weblectures and exercises to achieve the learning objectives.

Timetable

Schedule
For detailed information go to Timetable in Brightspace

Mode of instruction

Lectures, tutorials (exercise and discussion sessions)

Course load

6EC; 13 weeks of 3 hours of lectures and/or problem/discussion sessions; question session and written exam: 2+3=5 hours; selfstudy (homework, studying textbook and other literature, viewing weblectures, working out problems, study for exam): 124 hours.

Assessment method

Written examination.

Brightspace

Registration for Brightspace occurs via uSis by registration for a class activity using a class number

Reading list

For most of the course, we will follow the book “The Oxford Solid State Basics” by Steven H. Simon (Oxford University Press, 2016). The library has unlimited electronic copies.

Contact

Contact Details Lecturer:Dr.Peter Denteneer