Prospectus

nl en

Astronomical Spectroscopy

Course
2024-2025

Admission requirements

Knowledge of calculus and linear algebra at the bachelor level is required. In terms of the Leiden curriculum, the Astronomy bachelor's courses Quantum Mechanics 1 and Quantum Mechanics 2 are a prerequisite for enrolling in the course and the bachelor's course Radiative processes is strongly recommended.

Description

Astronomical observation is a subject combining astronomy, quantum mechanics, and experimental spectroscopy. To accurately interpret and optimize the knowledge and societal impact of the obtained telescope data in various spectral ranges, it is crucial to have a rigorous understanding of the principles of theoretical and laboratory works.
In this course, you will learn to understand and apply atomic and molecular spectroscopy in an astronomical context. The course covers the basics of absorption spectroscopy and the history of astronomical spectroscopy. You will learn how to interpret spectra and what is needed to simulate molecular spectra for electronic, vibrational, and rotational transitions. The course highlights the synergy between observational and laboratory spectroscopy in astronomical research.
This course starts with general principles of quantum mechanics, and from these derives the principles behind atomic and molecular spectroscopy of molecules commonly found in the interstellar medium. You will apply the newly learned theory to the spectral simulation using the Pgopher software and compare them with observational data. Finally, general laboratory spectroscopy will be introduced to demonstrate how a typical molecular spectrum is measured in fully controlled experimental conditions.

Course objectives

Upon completion of this course, you will be able to:
1. Read spectroscopic notation, and interpret and simulate (interstellar) spectra
2. Explain the origin of atomic and molecular spectra
3. Reproduce and simulate the typical shape of molecular spectra
4. Calculate/explain physical parameters from spectra
5. Read and summarize the literature on spectroscopy with astronomical applications
6. Explain solid state and gas phase spectra obtained in the laboratory

Timetable

See Astronomy master schedules

You will find the timetables for all courses and degree programmes of Leiden University in the tool MyTimetable (login). Any teaching activities that you have sucessfully registered for in MyStudyMap will automatically be displayed in MyTimeTable. Any timetables that you add manually, will be saved and automatically displayed the next time you sign in.

MyTimetable allows you to integrate your timetable with your calendar apps such as Outlook, Google Calendar, Apple Calendar and other calendar apps on your smartphone. Any timetable changes will be automatically synced with your calendar. If you wish, you can also receive an email notification of the change. You can turn notifications on in ‘Settings’ (after login).

For more information, watch the video or go the the 'help-page' in MyTimetable. Pleas note: Joint Degree students Leiden/Delft have to merge their two different timetables into one. This video explains how to do this.

Mode of instruction

  • Lectures

  • Exercise class

Assessment method

  • Exercise assignments (20%)

  • A written report about simulations performed in the exercise class and astronomical observations in literature (60%)

  • Oral presentation based on the written report (20%)

Reading list

  • Astronomical spectroscopy: An Introduction to the Atomic and Molecular Physics of Astronomical Spectra (J. Tennyson), ISBN 1860945139 (optional)

  • Modern Spectroscopy (J. Michael Hollas), ISBN 0470844159 (optional)

Registration

As a student, you are responsible for registering on time, i.e. 14 days before the start of the course. This can be done via Mystudymap. You do this twice a year: once for the courses you want to take in semester 1 and once for the courses you want to take in semester 2. Please note: late registration is not possible.

Registration for courses in the first semester is possible from July; registration for courses in the second semester is possible from December. First-year bachelor students are registered for semester 1 by the faculty student administration; they do not have to do this themselves. For more information, see this page

In addition, it is mandatory for all students, including first-year bachelor students, to register for exams. This can be done up to and including 10 calendar days prior to the exam or up to five calendar days in case of a retake exam. You cannot participate in the exam or retake without a valid registration in My Studymap.

Extensive FAQ's on MyStudymap can be found here.

Contact

Lecturer: Dr. K. Chuang

Remarks

Soft skills
During this course you will be trained in:

  • Finding, reading and summarizing modern astronomical literature

  • Writing a structured report on simulated spectra