Admission Requirements
Bachelor in Astronomy or equivalent. In particular Analyse 2NA, Linear Algebra 1NA and Linear Algebra 2NA. Basic programming skills.
Description
Randomness, uncertainties and deviations from the norm surround us in everyday life. A major asset of any scientist is to see beyond the complexity of noise, scatter and biases, and to find an underlying -often surprisingly simple- explanation for the noisy data. This course is specialized to astronomical data analysis, but the topics discussed will also foster an improved understanding of Google, Facebook and other free social media services.
Topics that will be covered include:
Descriptive statistics: Finding meaning in a huge data set.
Inference statistics: Constraining a physical model by data.
Filtering, e.g. for gravitational wave detections and source detection.
Random fields: Sky surveys and structure formation in cosmology.
Sampling methods: Making huge data analyses numerically feasible.
Bayesian Hierarchical Models: How to disentangle a seemingly complex analysis.
Prior Theory and Information Measures: How not to hide prejudices in an analyses.
Missing data and elusive physics: What to do if your sought signal hides in the dark figures?
Machine learning: Finding patterns which escape humans.
Course objectives
Principal course objective: After completion of this course, you will be able to correctly interpret noisy data. You will be able to design and apply statistical methods to answer scientific questions. You will be able to measure parameters, discover astronomical objects, or discover elusive signals in noisy data.
Upon completion of this course, you will be able to:
Recognize the most common distributions of noisy astronomical data
Identify signals in noisy data
Reject theories which are incompatible with data
Design own statistical methods to analyze complex data
Categorize astronomical objects
Solve simple Bayesian Hierarchical Models
Discover prejudices in analyses
Explain basic machine learning algorithms
Timetable
You will find the timetables for all courses and degree programmes of Leiden University in the tool MyTimetable (login). Any teaching activities that you have sucessfully registered for in MyStudyMap will automatically be displayed in MyTimeTable. Any timetables that you add manually, will be saved and automatically displayed the next time you sign in.
MyTimetable allows you to integrate your timetable with your calendar apps such as Outlook, Google Calendar, Apple Calendar and other calendar apps on your smartphone. Any timetable changes will be automatically synced with your calendar. If you wish, you can also receive an email notification of the change. You can turn notifications on in ‘Settings’ (after login).
For more information, watch the video or go the the 'help-page' in MyTimetable. Please note: Joint Degree students Leiden/Delft have to merge their two different timetables into one. This video explains how to do this.
Mode of instruction
Lectures on Monday, with bi-weekly numerical tutorial sessions on Thursday. One exercise sheet containing analytical and numerical problems will be handed out on Mondays. These are to be tackled proactively by the students. The Thursday tutorials will cover the analytical solutions, provide programming support, and help interpret the results.
Assessment method
Written exam
The retake exam can be written, or oral, depending on the number of retake students. The oral exams are effectively still written exams: the examinee will have to solve exercises similar to the exam exercises, i.e. provide derivations, provide sketches, explain calculations, answer context questions.
Reading list
None
Registration
As a student, you are responsible for registering on time, i.e. 14 days before the start of the course. This can be done via Mystudymap. You do this twice a year: once for the courses you want to take in semester 1 and once for the courses you want to take in semester 2. Please note: late registration is not possible.
Registration for courses in the first semester is possible from July; registration for courses in the second semester is possible from December. First-year bachelor students are registered for semester 1 by the faculty student administration; they do not have to do this themselves. For more information, see this page.
In addition, it is mandatory for all students, including first-year bachelor students, to register for exams. This can be done up to and including 10 calendar days prior to the exam or up to five calendar days in case of a retake exam. You cannot participate in the exam or retake without a valid registration in My Studymap.
Extensive FAQ's on MyStudymap can be found here.
Contact
Lecturer: Dr. Elena Sellentin and Dr. D.I. Grandón Silva BSc
Remarks
Soft skills
In this course, you will be trained in the following behaviour-oriented skills:
Problem solving (recognizing and analyzing problems, solution-oriented thinking)
Critical thinking (asking questions, check assumptions)
Analytical skills (analytical thinking, abstraction, evidence)
Creative thinking (resourcefulness, curiosity, thinking out of the box)