nl en

Alternative Energy Strategies




Admissions requirements

Pre-requisite 1: Energy Science
Pre-requisite 2: QRM


What does our energy future look like? Perhaps we will see solar installations in the Sahara, or the Atlantic coast lined with wave energy generators, from Scotland to Portugal. We might see hundreds of new nuclear power stations and tidal installations, along with wind turbines on every hill and ridgeline.

In this course, we will investigate what efforts are needed to decarbonize our modern society, and whether it is possible to keep up with increasing world population and energy demands. We will investigate future energy scenarios and quantify their influence on anthropogenic greenhouse gas emissions.

The first part of the course will cover the technologies needed for harnessing renewable energy, including energy storage, electricity transmission, electric vehicles, and jet fuel alternatives. We will also investigate technologies needed for reducing energy use, such as smart meters, passive heating/cooling, and grid monitoring.

We will then examine the political and scientific arguments surrounding energy intensity. Is it really possible to decouple economic growth and energy usage?

Students will develop several models for energy forecasting. By balancing multiple generation types, they will evaluate these models for their contribution to emissions reductions, social development, and public health.

Course objectives

This course builds and extends upon the scientific knowledge and approaches developed in the course Energy Science. Students will devise several models of future energy and economy growth using the Kaya identity. They will use the fundamental equations of climate change and energy use to develop future strategies which mitigate against temperature increases. Students will gain further confidence in devising, manipulating, and computing equations.

  • Students will be able to synthesize and evaluate theories, ideas and predictions of future energy scenarios

  • Students will apply the knowledge they have learnt over the course to evaluate energy scenario ability to mitigate environmental change

  • Students will apply knowledge of energy modelling in developing future scenarios.


Once available, timetables will be published in the e-Prospectus.

Mode of instruction

This course will consist of structured lectures including class discussions based on cutting edge science along with example calculations. The course will also feature guest lectures from energy professionals.


Individual Assignment 1: Past Energy Scenarios 17.5%
Individual Assignment 2: Future Energy Scenarios 17.5%
Small group Assignment 3: Energy technology research review 17.5%
Presentation Assignment 4: Research presentation 15%
Course Participation: 15%
Final Exam: 17.5%


There will be a Blackboard site available for this course. Students will be enrolled at least one week before the start of classes.

Reading list

Compulsory Equipment:
You must have a calculator for this course, purchase one as soon as possible. A standard scientific calculator is sufficient, and should cost no more than 15 Euros. An example calculator is the Casio FX82.
Compulsory Readings:
A number of readings will be made available throughout the course and will be provided through blackboard. These will include journal publications and news coverage of energy science and issues.
Recommended Readings:

McKay, D., 2008, Without the hot air, UIT (ISBN: 978-0954452933), 384pp (a great primer on modern energy issues in the UK, and free at read the extra notes and technical chapters too.)
Yergin, D., 2011, The Quest, Penguin (Excellent, popular paper back from a Pulitzer prize winner).

Smil, V., 2003, Energy at the Crossroads, MIT Press
Smil, V., 2010, Energy Myths and Realities: Bringing science to the policy debate, AEI press, ISBN: 978-0844743288

Sorensen, B., 2010, Renewable Energy, Fourth Edition: Physics, Engineering, Environmental Impacts, Economics & Planning, Academic Press, ISBN: 978-0123750259


This course is open to LUC students and LUC exchange students. Registration is coordinated by the Education Coordinator. Interested non-LUC students should contact


Dr Paul Behrens