Due to the Corona virus education methods or examination can deviate. For the latest news please check the course page in Brightspace.

Prospectus

nl en

Data Science and Process Modelling

Course
2020-2021

Admission requirements

Not applicable.

Description

This course builds on concepts taught in the Leiden courses on Data Mining and Databases.
It consists of two parts: Data Science and Process Modelling.

Data Science. The data science aspects of this course deal with the ever-increasing need of organizations to analyze, visualize, mine and understand their own data. Topics include visualization, descriptive analytics and predictive analytics, but also more recent techniques such as network science.
For this part of the course, students join the 6 ECTS course on Data Science by dr. Suzan Verberne, course code 4032DASC6.

Process Modelling. The process modelling aspect of this course addresses the fact that organizations must constantly optimize, update, and monitor the execution of their processes to stay competitive and efficient. These processes are developed on the basis of organizational targets and strategic goals, but of course the underlying IT landscape is also of influence on process design, development, implementation, and execution.
During this course, data science and process modelling finally come together in the topic of process mining: a data-driven approach to understanding business process management.

Course objectives

By the end of the course, the student should be able to:

  1. Be aware of the most relevant concepts related to data science (as specified in course 4032DASC6) and process modelling
  2. Be able to model a business process in a common notation and
  3. Understand the differences, strengths, and weaknesses of specific modeling languages.
  4. Be able to undertake an independent research project into data science and/or process mining.

Timetable

The most updated version of the timetables can be found on the students' website:

Mode of instruction

Weekly lectures and lab sessions.

Assessment method

Exam (60%) and practicum (40%).
The teacher will inform the students how the inspection of and follow-up discussion of the exams will take place.

Reading list

See Data Science (4032DASC6).

The following book is optional reading material for the process modelling part of the course.

  • Wil van der Aalst, Process Mining: Data Science in Action, 2nd edition, Springer, 2016.
    ISBN: 9783662498507

Registration

Aanmelding voor vakken verloopt via uSis. Hiervoor is de uSis-code van het vak nodig, die te vinden zijn in de Studiegids. Meer info over het inschrijven voor vakken of tentamens is hier te vinden.

MyTimetable

In MyTimetable kun je alle vak- en opleidingsroosters vinden, waarmee jij je persoonlijke rooster kunt samenstellen. Onderwijsactiviteiten waarvoor je in uSis staat ingeschreven, worden automatisch in je rooster getoond. Daarnaast kun je My Timetable gemakkelijk koppelen aan een agenda-app op je telefoon en worden roosterwijzigingen automatisch in je agenda doorgevoerd; bovendien ontvang je desgewenst per e-mail een notificatie van de wijziging.

Vragen? Bekijk de video-instructie, lees de instructie of neem contact op met de ISSC helpdesk.

Brightspace

Inschrijving voor vakken verloopt via uSis. Wanneer je je hier inschrijft voor een bepaald vak krijg je automatisch ook toegang tot de omgeving van dit vak via Brightspace.

Voor meer informatie over Brightspace kun je op deze link klikken om de handleidingen van de universiteit te bekijken. Bij overige vragen of problemen kan contact opgenomen worden met de helpdesk van de universiteit Leiden.

Contact

Onderwijscoördinator Informatica, Riet Derogee.

Remarks

Data Science & Process Modeling.