Admission requirements
This course is a core course in the MSc Life Science and Technology programme and an elective course for MSc Chemistry Chemical Biology students.
For students with a BSc degree in MST, LST or equivalent. Students should be familiar with basic concepts in Nanoscience, Nanotechnology, Thermodynamics and Statistical Thermodynamics.
Description
Bionanotechnology studies the implementation of nanomaterials to understand biology. Bionanotechnology finds many applications in chemical biology research, DNA/protein sequencing, drug delivery systems, sustainable energy, and biosensors.
This course introduces nanotechnologies from a chemical perspective and details to what extent nanotechnology can be used to study biology. A particular focus of the course will be given to graphene, other two-dimensional materials, nanopores, and nanoparticles – with the objective to understand why those new nanomaterials are so much in the spot lights of scientific and academic research. Basic concepts such as bottom-up and top down nanofabrication, surface functionalization, biomolecular sequencing, wetting transparency, colloidal stability, nanocrystal nucleation & growth, electronic device nanophysics, and single molecule biochemistry, are explained first. Then, these elementary blocks will be put in perspective for applications: field-effect biosensing, nanopore sensing, current DNA sequencing technologies, and drug-delivery with nanoparticles.
Course objectives
Understanding and knowledge of the use of nanotechnology in the design of sensors, particularly the use of nanopores and single molecule sensors
Knowledge of the theoretical foundations of phase diagrams in the context of van der Waals theory and Classical Nucleation Theory
Understanding and knowledge of the properties of two dimensional materials (including graphene) in the design of biosensors
Knowledge of the theoretical principles that constitute the DLVO theory and the connection with Colloidal Stability
Knowledge of graphene properties, synthesis, transfer and device nanofabrication and microfabrication
Understanding of the experimental phenomenon of Wetting in terms of the Wetting Diagram and surface tensions involved, and rudimentary knowledge of the theoretical description of Wetting in terms of the Surface Potential
Knowledge of colloidal and nanoparticle-based drug delivery systems.
Timetable
Schedule information can be found on the website of the programmes. Assignment deadlines are communicated via Brightspace.
Mode of instruction
Lectures, problem solving, homework, writing a proposal, oral defense of the proposal
Exercises/corrections
Assessment method
Written exam (2/3 of the grade) and written proposal with oral defense (1/3 of the grade).
Changes to the assessment method due to corona restrictions are announced via Brightspace and in
the lectures a minimum of 10 working days before the originally scheduled exam date.
Reading list
G.F. Schneider et al. “Single molecule detection with graphene: nanopores and beyond” (Chemical Society Reviews, 2015), “Chemical and biological sensing with a graphene surface” (Advanced Materials, 2015), “Chemistry of graphene edges” (ChemPhysChem, 2015); handouts; articles.
Registration
Register for this course via uSis.
Contact
Remarks
According to OER article 4.8, students are entitled to view their marked examination for a period of 30 days following the publication of the results of a written examination. Students should contact the lecturer to make an appointment for such an inspection session.