Admission requirements
Familiarity with basic concepts of cosmology is assumed. The student is assumed to have basic knowledge of the thermal history of the universe, recombination, the cosmic microwave background, cosmic distances, horizons, and to be able to work with the Friedmann equation. In terms of the Leiden curriculum, the Astronomy master's course Origin and Evolution of the Universe provides the ideal preparation.
Description
How galaxies and the large-scale structures in which they are embedded form is a fundamental question in extra-galactic astronomy. It is an area that has seen tremendous progress, but is still constantly challenged by ever-improving observational data. This course introduces you to this fascinating subject and the underlying physics.
Physical concepts are derived from basic principles where possible. The emphasis is on intuitive rather than mathematically rigorous derivations.
Topics that will be covered include:
Linear growth of density perturbations
Free streaming
Transfer functions and the matter power spectrum
Non-linear spherical collapse
Jeans smoothing
Radiation drag
Statistical cosmological principle
Clustering and biasing
Halo mass functions and Press-Schechter theory
Scaling laws and virial relations
Cosmic web
Redshift-space distortions
Radiative cooling and its importance
Angular momentum and its influence
Reionization
The Gunn-Peterson effect
The thermal history of the intergalactic medium
Feedback processes
Halo models, semi-empirical models, and simulations
Course objectives
Upon completion of this course you will understand how (we think that) large-scale structures and galaxies form and evolve and you will be able to carry out calculations of the formation of structures in the universe.
Upon completion of the course you will be able to:
Compute the growth of density fluctuations
Compute the shape of the matter power spectrum
Explain the morphology of the cosmic web
Explain redshift-space distortions
Explain galaxy biasing and clustering
Compute halo mass functions using Press-Schechter theory
Compute galaxy and halo scaling relations
Understand radiative cooling processes
Estimate the effect of radiative cooling on galaxy formation
Estimate the effect of angular momentum on galaxy formation
Model the process of reionization
Compute the thermal history of the intergalactic medium
Compute Gunn-Peterson absorption
Understand the basics of feedback processes in galaxy formation
Understand the basics of halo models, semi-empirical models and simulations of galaxy formation
Soft skills
At the end of this course, you will have been trained in the following behavior-oriented skills:
Analytical skills (analytical thinking, abstraction, evidence)
Structured thinking (structure, modulated thinking, computational thinking)
Critical thinking (asking questions, check assumptions)
Responsibility (ownership, self-discipline)
Timetable
See Astronomy master schedules
Mode of instruction
Lectures
Exercise classes
Assessment method
Written exam, see the Astronomy master examination schedules.
Blackboard
Blackboard is not used for this course.
Reading list
The course content will be defined by the lecture notes taken by the students and figures distributed by the lecturer.
Registration
Via uSis. More information about signing up for your classes can be found here. Exchange and Study Abroad students, please see the Prospective students website for information on how to apply.
Contact information
Lecturer: Prof. dr. K. (Koen) Kuijken
Assistant: Stijn Debackere
Remarks
None