Admission requirements
Analysis 1, 2, 3, Linear Algebra 1, Classical Mechanics a and b. Linear Algebra 2 needs to be followed in parallel, unless the contents of this course is already known.
Description
The course offers an introduction into quantum mechanics. It starts with the Schrödinger equation, and describes the wave function with its statistical interpretation. Subsequently, a few examples of quantisation are illustrated as solutions of the one-dimensional time-independent Schrödinger equation. A more formal treatment follows with the introduction of Hilbert space and the formulation of quantum mechanics in terms of linear algebra. The final objective is quantum description of the hydrogen atom, which requires a discussion of spherically symmetric three-dimensional systems, orbital angular momentum and spin angular momentum.
Concepts that will be presented include: the Schrödinger equation, Heisenberg’s uncertainty relation, the wave function and its statistical interpretation, stationary states, the wave packet, Hilbert space, tunnelling, a particle in an infinite square well, the harmonic oscillator and the free particle, operators, ladder operators, the Dirac notation, eigenvalue equations, angular momentum and spin, and the quantum description of the hydrogen atom.
Course objectives
Quantum mechanics is strange and counter-intuitive, yet it is extremely accurate and successful in describing the outcomes of experiments. True knowledge and understanding of quantum mechanics require study of many simple example systems and training in the use of the mathematical tools.
In this course the students acquire the ability to independently solve simple problems in quantum mechanics, and therewith builds intuition and understanding of the quantum world.
Timetable
Schedule
For detailed information go to Timetable in Brightspace
You will find the timetables for all courses and degree programmes of Leiden University in the tool MyTimetable (login). Any teaching activities that you have sucessfully registered for in MyStudyMap will automatically be displayed in MyTimeTable. Any timetables that you add manually, will be saved and automatically displayed the next time you sign in.
MyTimetable allows you to integrate your timetable with your calendar apps such as Outlook, Google Calendar, Apple Calendar and other calendar apps on your smartphone. Any timetable changes will be automatically synced with your calendar. If you wish, you can also receive an email notification of the change. You can turn notifications on in ‘Settings’ (after login).
For more information, watch the video or go the the 'help-page' in MyTimetable. Please note: Joint Degree students Leiden/Delft have to merge their two different timetables into one. This video explains how to do this.
Mode of instruction
The lectures follow the book by Griffiths and Schroeter, and you are expected to prepare for each lecture by reading the materal (about 15 pages per week). The lectures are offered in English.
Exercise classes are orginised in groups. Teaching assistents will offer step-by-step instruction for solving problems, alternated with blocks of time for the students to solve problems, where assistance is constantly offered.
See Brightspace
Assessment method
Written exam with open questions. The exam can be retaken.
Reading list
Introduction to Quantum Mechanics, third edition,D.J. Griffiths and D.F. Schroeter,Cambridge University Press,ISBN 978-1-107-18963-8
Registration
From the academic year 2022-2023 on every student has to register for courses with the new enrollment tool MyStudyMap. There are two registration periods per year: registration for the fall semester opens in July and registration for the spring semester opens in December. Please see this page for more information.
Please note that it is compulsory to both preregister and confirm your participation for every exam and retake. Not being registered for a course means that you are not allowed to participate in the final exam of the course. Confirming your exam participation is possible until ten days before the exam.
Extensive FAQ's on MyStudymap can be found here.
Contact
Contact details of the lecturer: Prof.dr. Jan van Ruitenbeek
Remarks
none