Admission Requirements
Bachelor in Physics, Statistical Physics a and knowledge of basic statistical mechanics.
Description
What do a magnet, a Bose-Einstein condensate and a flock of birds have in common? All these systems exhibit a collective behavior and have large-scale physical properties that cannot be understood in terms of a simple extrapolation of the properties of a few particles. Conversely, systems comprising many interacting subunits often present entirely new properties, that scientists refer to as emergent.
Statistical Physics B, is the second part of a two-part introductory course on emergent phenomena in equilibrium and non-equilibrium systems. The course provides an introduction to phase transition and collective behavior in non-equilibrium systems, with special attention for active (i.e. self-driven) particles. The first (compulsory) part of this course is given in Statistical Physics A and is focused on phase transitions and critical phenomena at equilibrium.
The course consists of 4 lectures and 1 tutorial. During the tutorial, the students will work in groups and use interactive software (developed by former MSc student Leandros Talman) to simulate the dynamics of bird flocks.
Topics
Introduction to collective behavior: flocking, schooling, swarming etc.
The XY-model and the Mermin-Wagner theorem.
The Vicsek model.
Giant density fluctuations.
Course Objectives
The aim of the course is to develop a strong foundation in advanced statistical mechanics with an emphasis on emergent phenomena. Furthermore, the course aims to provide the students with a toolbox of mathematical techniques that can be readily used in theoretical and experimental research projects.
Specifically, at the end of the course, successful students will have learned how to:
Model the relaxation dynamics of equilibrating fields.
Construct a simple phenomenological hydrodynamic theory of self-propelled objects.
Calculate number density and order parameter fluctuations from hydrodynamic equations instead of the Hamiltonian.
Perform simple numerical simulations and analyze data (but no coding will necessary).
Timetable
Physics Schedule
For detailed information go to Timetable in Brightspace
In MyTimetable, you can find all course and programme schedules, allowing you to create your personal timetable. Activities for which you have enrolled via MyStudyMap will automatically appear in your timetable.
Additionally, you can easily link MyTimetable to a calendar app on your phone, and schedule changes will be automatically updated in your calendar. You can also choose to receive email notifications about schedule changes. You can enable notifications in Settings after logging in.
Questions? Watch the video, read the instructions, or contact the ISSC helpdesk.
Note: Joint Degree students from Leiden/Delft need to combine information from both the Leiden and Delft MyTimetables to see a complete schedule. This video explains how to do it.
Mode of instruction
See Brightspace
Assessment method
Take-home exam consisting of a an analytical and a computational exercise.
Reading list
Reading material (research papers and notes) will be provided during the lectures.
Registration
As a student, you are responsible for enrolling on time through MyStudyMap.
In this short video, you can see step-by-step how to enrol for courses in MyStudyMap.
Extensive information about the operation of MyStudyMap can be found here.
There are two enrolment periods per year:
Enrolment for the fall opens in July
Enrolment for the spring opens in December
See this page for more information about deadlines and enrolling for courses and exams.
Note:
It is mandatory to enrol for all activities of a course that you are going to follow.
Your enrolment is only complete when you submit your course planning in the ‘Ready for enrolment’ tab by clicking ‘Send’.
Not being enrolled for an exam/resit means that you are not allowed to participate in the exam/resit.
Contact
Lecturer: Dr. Luca Giomi
Remarks
Transferable skills
At the end of the course, students will have been trained how to:
Work in teams.
Write a scientific essay based on original results.
Software
Starting from the 2024/2025 academic year, the Faculty of Science will use the software distribution platform Academic Software. Through this platform, you can access the software needed for specific courses in your studies. For some software, your laptop must meet certain system requirements, which will be specified with the software. It is important to install the software before the start of the course. More information about the laptop requirements can be found on the student website.