Admission Requirements
Knowledge of statistical physics is expected, as well as basic programming skills.
Description
An important aspect of physics research is modeling: complex physical systems are simplified through a sequence of controlled approximations to a model that lends itself for computations, either analytic or by computer. In this course, the origin of a number of widely used models will be discussed. For instance, the liquid-gas transition of Argon can be studied by a Lennard-Jones system of particles. Insight into these models can be obtained through a number of ways, one of which is computer simulations. During this course, simulation methods of various models will be discussed in the lectures as well as in computer lab sessions.
There are three projects:
Project 1: Molecular dynamics simulation of Argon atoms
Project 2: Monte Carlo simulation of the two-dimensional Ising model
Project 3: Choice from a large number of possible projects (march of the penguins, computational astrophysics, lattice Boltzmann model, simulation of piano strings, self-organized criticality, pandemics, cosmological simulations and more)
Note: The course is also offered in a short version (3 EC). The long version (6 EC) is recommended for students who expect to go into performing computational research projects in the future whereas the short version (first project only) is recommended for all students.
Course Objectives
After completion of this course, you will be able to:
write efficient and well-documented computer code and validate it,
assess the pros and cons of various computational methods,
investigate particular topics in computational physics and present the findings in scientifc reports and an oral presentation
Timetable
In MyTimetable, you can find all course and programme schedules, allowing you to create your personal timetable. Activities for which you have enrolled via MyStudyMap will automatically appear in your timetable.
Additionally, you can easily link MyTimetable to a calendar app on your phone, and schedule changes will be automatically updated in your calendar. You can also choose to receive email notifications about schedule changes. You can enable notifications in Settings after logging in.
Questions? Watch the video, read the instructions, or contact the ISSC helpdesk.
Note: Joint Degree students from Leiden/Delft need to combine information from both the Leiden and Delft MyTimetables to see a complete schedule. This video explains how to do it.
Mode of Instruction
One meeting per week, consisting of a mixture of lectures and supervised working on the projects. There will be online learning material as well.
The main emphasis of the course are the computational projects that are mostly performed outside the regular contact hours. In a hands-on approach, concepts are immediately applied to a concrete problem. The basic concepts taught in the lecture will be deepened by the students individually in setting up and running the simulations, and by independent literature study.
Assessment method
The students (working in pairs) produce two reports (project 1 and 2) including the code and an analysis of the results.
Project 3 is chosen from a large set of possible problems and is presented as a talk.
The final grade is the average of the grades for these three projects.
The short version of this course (3EC) only comprises the first project.
Reading list
See Brightspace.
Registration
As a student, you are responsible for enrolling on time through MyStudyMap.
In this short video, you can see step-by-step how to enrol for courses in MyStudyMap.
Extensive information about the operation of MyStudyMap can be found here.
There are two enrolment periods per year:
Enrolment for the fall opens in July
Enrolment for the spring opens in December
See this page for more information about deadlines and enrolling for courses and exams.
Note:
It is mandatory to enrol for all activities of a course that you are going to follow.
Your enrolment is only complete when you submit your course planning in the ‘Ready for enrolment’ tab by clicking ‘Send’.
Not being enrolled for an exam/resit means that you are not allowed to participate in the exam/resit.
Contact
Lecturer: Dr. Matthieu Schaller
Remarks
Transferable Skills
You will be able to:
master a new field of study in computational physics within a given time period
present your findings to fellow students in a convincing and inspiring way
write structured essays on computational projects
Software
Starting from the 2024/2025 academic year, the Faculty of Science will use the software distribution platform Academic Software. Through this platform, you can access the software needed for specific courses in your studies. For some software, your laptop must meet certain system requirements, which will be specified with the software. It is important to install the software before the start of the course. More information about the laptop requirements can be found on the student website.