Tags
EES
Admissions requirements
Required: Energy and Resource Management
Recommended: Physics (high school or LUC)
Description
For the past century, our modern world has thrived upon the incredible energy density of fossil fuels. Fossil fuels are the bedrock of our society, providing mobility, food, housing, and long lifespans to a growing population. Unfortunately, fossil fuel usage also releases gases into the atmosphere that warm the planet. Global warming is arguably the most critical problem facing humanity; it will continue to influence our civilization for many decades – and even centuries – to come. Developing alternatives to the continued exploitation of oil, gas, and coal is crucial if we are to mitigate the impacts of climate change on human communities and the ecosystem.
This course will lay the scientific foundations of energy generation. First, we will investigate the physics of energy and power. Then, we will investigate why fossil fuels have been so successful in developing and sustaining our modern lifestyle. The core of this course will be an analysis of the varied types of renewable and sustainable energies. We will profile wind, wave, tidal, hydro, solar, and geothermal energies. We will also investigate biofuels, and nuclear energy options. In doing so, we will assess the opportunities, advantages, and disadvantages of each energy type; always keeping in mind the scientific, social, and environmental plausibility of each energy source.
Course objectives
After successful completion of this course students are able to, among many other things:
Evaluate the basic equations of energy science, from thermodynamics to solar photovoltaics
Describe the energy use by society by supply and demand types.
Contrast the different assumptions necessary in energy systems
Develop mathematical approaches for considering the change in energy use over time.
Students will have knowledge of, among many other things:
Contrast the different energy types and their advantages and disadvantages
Provide detailed understandings and descriptions of the major issues of our current energy use, from climate change to energy security.
Evaluate the possibility of each energy type for future use.
Timetable
Once available, timetables will be published here.
Mode of instruction
This course will consist of structured lectures including class discussions, demonstrations, and example calculations. We will develop models for examining
energy contributions.
Assessment
Assignment 1: Individual Research 12.5 %
Assignment 2: Individual Problem Solving 12.5%
In class test 25%
Course Participation: 10%
Final Exam: 40%
Blackboard
There will be a Blackboard site available for this course. Students will be enrolled at least one week before the start of classes.
Reading list
Compulsory Equipment:
You must have a calculator for this course, purchase one as soon as possible. A standard scientific calculator is sufficient, and should cost no more than 15
Euros. An example calculator is the Casio FX82.
Compulsory Readings:
A number of readings will be made available throughout the course and will be provided through blackboard. These will include journal publications and news
coverage of energy science and issues.
Recommended Readings:
McKay, D., 2008, Without the hot air, UIT (ISBN: 978-0954452933), 384pp (a great primer on modern energy issues in the UK, and free at http://www.withouthotair.com/)
Everett, E., Boyle G., Peake, S., and Ramage, J., Energy Systems and Sustainability, Oxford University Press, ISBN: 978-0-19-959374-3, 672pp (a textbook-style treatment of energy issues with introductory equations).
Registration
This course is open to LUC students and LUC exchange students. Registration is coordinated by the Education Coordinator. Interested non-LUC students should
contact course.administration@luc.leidenuniv.nl.
Contact
p.a.behrens@luc.leidinuniv.nl