Prospectus

nl en

Stellar Structure and Evolution

Course
2019-2020

Admission requirements

None

Description

Stellar observations and the quest for understanding stars have always been at the core of astronomy since ancient times. Stars are not only extraordinary physics laboratories, but they are also vital to our understanding of the life cycle of systems at all scales, such as planets, galaxies and the intergalactic medium. In this course, you will first learn the basic physics of stellar structure in all relevant physical regimes. Then, we will follow a journey through a star’s life where its structure changes as a function of time. We will only focus on isolated stars.

Course objectives

The goal of the course is to understand the structure and evolution of stars, and their observational properties, from the pre-main-sequence, through the main-sequence, and post-main-sequence phases, how this relates back to fundamental physical processes including the interaction of matter and radiation, thermodynamics and the equation of state of gasses, nucleosynthesis and the formation of elements, and to apply this understanding to a state-of-the-art code for stellar evolution, MESA.

After completion of this course, you will be able to answer quantitative and qualitative questions about a star’s interior structure and life path, when considering an isolated star, ignoring magnetic fields and rotation.

This means that after this course you will be able to:

  • Run and process the output of the MESA stellar evolution code

  • Recognise a star’s evolution stage from its observational appearance

  • Name the main uncertainties in the current knowledge of stellar structure and evolution

  • Write a clear and professional scientific report

Soft skills

In this course, the homework will train your scientific writing skills.

Timetable

See Astronomy master schedules

Mode of instruction

Lectures

Assessment method

  • Written exam (70% of the final grade), see the Astronomy master examination schedules

  • Homework assignments: numerically calculating a stellar evolution track, visualising the output and critically reporting your work in written form (30% of the final grade)

Passing grades are required in both the final exam and the homework.

Blackboard

Blackboard will be used to communicate with students and to share lecture slides, homework assignments, and any extra materials. You must enroll on Blackboard before the first lecture. To have access, you need a student ULCN account.

Reading list

Stellar Structure and Evolution, Authors: Kippenhahn, R, Weigert, A, Weiss, A, Springer Verlag (recommended)

Registration

Via uSis. More information about signing up for your classes can be found here. Exchange and Study Abroad students, please see the Prospective students website for information on how to apply.

Contact information

Lecturer: Dr. Y. (Yamila) Miguel
Assistants: Stella Reino, Fraser Evans