Vanwege het Corona virus is het nog onduidelijk hoe het onderwijs precies verzorgd gaat worden. Zie voor de actuele informatie de betreffende vakpagina’s op Blackboard/Brightspace.

Studiegids

nl en

Kwantitatieve methoden

Vak
2019-2020

Description

This is a class in applied single equation ordinary least squares (OLS) regression analysis and factor analysis. It will be assumed that students have mastered the topics of basic statistics. The first topic is a review of the single equation OLS regression model in bivariate and multivariate applications. The emphasis would be developing an understanding of the logic of OLS regression, understanding of the parameter estimates they generate, and understanding the use of statistical tests to assess such models. The second topic will be a review of the assumptions underlying the OLS regression model. The emphasis throughout will be on the substantive interpretation of regression results. The third topic will be an introduction to the logic and use of factor analysis with an emphasis on understanding and interpreting its results.

Course objectives

  • Students will have acquired knowledge of the logic of OLS regression and factor analysis and the assumptions underlying the OLS regression model.

  • Students will be able to interpret and report the results of OLS regression and factor analysis.

  • Students will be able to apply OLS regression and factor analysis to public administration research problems in tutorial assignments and a final group paper.

  • Students will be able to communicate the results of OLS regression and factor analysis in written form using the conventions used by practitioners and social scientists for reporting these results.

Timetable

On the right side of programme front page of the E-guide you will find links to the website and timetables, uSis and Blackboard.

Mode of instruction

  • Lectures

  • Workgroups (mandatory attendance)

Course Load

  • Lectures (14 hours)

  • Workgroups (8 hours)

  • Final exam (5 hours)

  • Other assessments (25 hours)

  • Self-study (88 hours)

Assessment method

The following assessments will be used:

  • Take-home midterm exam (20%). Enrollment on the course Blackboard site is required to receive this examination.

  • Final group paper (30%)

  • Multiple-choice final exam (50%)

The following rules will apply regarding mandatory workgroup attendance and assignments:

  • Students must attend all four workgroup sessions. If one workgroup session is missed, the student must do an extra assignment. If more than one session is missed, the student will not receive a grade for the course. It is the responsibility of each student to register their attendance with the workgroup instructor.

  • Students must submit all three workgroup assignments and the tutorial assignments on time. If one such assignment is submitted late or not submitted at all, the student must do an extra assignment. If more than one workgroup assignment is submitted late, the student will not receive a grade for the course.

  • If a student misses one or more workgroups and turns in one or more workgroup assignments late (or not at all), the student will not receive a grade for the course.

Students must receive a sufficient grade (5.5 or higher) on all three graded components to pass the course.

The following resit provisions apply:

  • One additional take-home midterm exam will be provided in January for students who do not pass the initial take-home midterm exam. Students receive a maximum grade of 7 on this resit.

  • If the group assignment receives an insufficient grade, the group may resubmit this assignment once. If the group does not submit the initial group assignment before the deadline, they may submit it after the deadline but will not have the opportunity to retake this assignment if they receive an insufficient grade.

  • A resit for the final exam will be given in January.

You can find more information about assessments and the timetable exams on the website.
Details for submitting papers (deadlines) are posted on Blackboard.
On the Public Administration front page of the E-guide you will find links to the website, uSis and Blackboard.

More information about participation in exams can be found in the Rules & Regulations.

Blackboard

The Blackboard site will be available for students at least one month before the start of the class so that students can enroll in the site and receive updates when new content is posted. A course outline and other information will be posted on Blackboard one week before the start of the course.

Reading list

  • Paul D. Allison, 1999. Multiple Regression: A Primer. Thousand Oaks, California: Pine Forge Press.

  • Dunteman, George H., 2011. Principal Components Analysis. Newbury Park, California: SAGE Publications, Inc. (FREE E-BOOK AVAILABLE FROM LEIDEN LIBRARY)

Registration

Register for every course and workgroup via uSis. Some courses and workgroups have a limited number of participants, so register on time (before the course starts). In uSis you can access your personal schedule and view your results. Registration in uSis is possible from four weeks before the start of the course.

Also register for every course in Blackboard. Important information about the course is posted there.

Contact

Dr Brendan J. Carroll (Wijnhaven, 4.93), office hours by appointment:
E-mail: b.j.carroll@fgga.leidenuniv.nl