Due to the Corona virus education methods or examination can deviate. For the latest news please check the course page in Brightspace.


nl en

Bionanotechnology (BNT)


This course is a core course in the MSc Life Science and Technology programme and an elective course for MSc Chemistry Chemical Biology students.

Admission requirements

Students with a BSc degree in MST or LST should have sufficient background knowledge for the BNT course. Other students should be familiar with basic concepts in Nanoscience, Nanotechnology, Thermodynamics and Statistical Thermodynamics.


Bionanotechnology studies the implementation of nanomaterials to understand biology. Bionanotechnology finds many applications in chemical biology research, DNA/protein sequencing, drug delivery systems, sustainable energy, and biosensors.
This course introduces nanotechnologies from a chemical perspective and details to what extend nanotechnology can be used to study biology. A particular focus of the course will be given to graphene, other two-dimensional materials, nanopores, and nanoparticles – with the objective to understand why those new nanomaterials are so much in the spot lights of scientific and academic research. Basic concepts such as bottom-up and top down nanofabrication, surface functionalization, biomolecular sequencing, wetting transparency, colloidal stability, nanocrystal nucleation & growth, electronic device nanophysics, and single molecule biochemistry, are explained first. Then, these elementary blocks will be put in perspective for applications: field-effect biosensing, nanopore sensing, current DNA sequencing technologies, and drug-delivery with nanoparticles.

Learning goals:

  • Understanding and knowledge of the use of nanotechnology in the design of sensors, particularly the use of nanopores and single molecule sensors

  • Knowledge of the theoretical foundations of phase diagrams in the context of van der Waals theory and Classical Nucleation Theory

  • Understanding and knowledge of the properties of two dimensional materials (including graphene) in the design of biosensors

  • Knowledge of the theoretical principles that constitute the DLVO theory and the connection with Colloidal Stability

  • Knowledge of graphene properties, synthesis, transfer and device nanofabrication and microfabrication

  • Understanding of the experimental phenomenon of Wetting in terms of the Wetting Diagram and surface tensions involved, and rudimentary knowledge of the theoretical description of Wetting in terms of the Surface Potential

  • Knowledge of colloidal and nanoparticle-based drug delivery systems.

Mode of instruction

Lectures, problem solving, home work, writing a proposal, oral defense of the proposal





Schedule information can be found on the website of the programmes


G.F. Schneider et al: “Single molecule detection with graphene: nanopores and beyond” (Chemical Society Reviews, 2015)*, “Chemical and biological sensing with a graphene surface” (Nanoscale, 2015)*, “Chemistry of graphene edges” (Angewandte Chemie, 2015)*; handouts; articles.

Assessment method

Written exam (2/3 of the grade) and a proposal+defense (1/3).